Spring Snowmelt in the Sierra Nevada: Does a Day Make a Difference?
D. Peterson, M. Dettinger, D. Cayan, R. Smith, L. Riddle and N Knowles

Daily fluctuations in air temperature
can explain much of the variability
in snowmelt-driven discharge in the
high Sierra Nevada river basins dur-
ing spring (Dettinger this issue; Cayan
this issue). Statistical/dynamical
methods appear useful in exploring
this linkage between air temperature
and discharge in the Merced River
basin above Happy Isles, Yosemite
National Park, California. As a first
step, input (air temperature) is filtered
to estimate output (discharge) using
constant parameter difference equa-
tions (constant over the snowmelt
cycle but varying from year-to-year).
The discharge response to present and
past temperatures determines the fil-
ter characteristics. In general as might
be expecned the response is larger in
springs following wet than dry win-
ters. In a more realistic model, the
parameters are time-varying such as
in daily estimates using a2 Kalman
filter. Ultimately, as snowpack wanes,
air temperature is less and less “in
control” and the time-varying response
coefficients decline. Does this phe-
nomenon mark the beginning of
summer (ze, a hydroclimate “summer
transition”)? Difference equation
models appear to be useful in curve
fitting and, at the very least, show the
strong connection between air tem-
perature and discharge (which could
be exploited for filling gaps in time
series, exploring data quality, ezc).

But to the extent air temperature can
be predicted, can we also forecast dis-

charge - that is, can useful discharge’

forecasts extend out as far as tempera-
ture forecasts? With each new day,
both forecast and model errors accu-
mulate. In a preliminary example,
alternating between a Kalman filter
to estimate model coefficients and a
difference filter to estimate discharge,
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this method seems useful. Although
we are only in the initial stages of
developing a reliable prediction
scheme, the strong correspondence
apparent in daily temperature and
streamflow emphasizes “what a dif-
ference a day makes”.

The Problem

River discharge is a major control on
the physics, chemistry, and biology
of San Francisco Bay. Management of
the bay/delta region often centers on
river discharge issues, including salin-
ity penetration. Therefore, the more
we know about the causes and con-
sequences of the variations in Central
Valley discharge (delta outflow), the
less likely management actions are to
cause inadvertent problems.

We know only the initial (pre-Euro-
pean settlement) hydrologic condi-
tion in much of the Sacramento-San
Joaquin watershed via proxy meth-
ods. Peeling off the multi-layers of
water management and land use ef-
fects to “see” the natural variability in
discharge at high resolution is, per-
haps, almost impossible. However, a
major component of dlscharge is
snowmelt, especially in spring. The
major processes controlling spring
snowmelt are natural and are at high
elevations where the gaging stations
lie above the fray.

The crown jewel in gage sites for
linking atmospheric circulation to
discharge through the spring snow-
melt signal is the Merced River at
Happy Isles, Yosemite National
Park (Figure 1). Due to the foresight
of early hydrologists, this station has
continuous daily records since 1916
(Cobb and Biesecker 1971;

Lawrence 1987).

Data and Methods

Air temperature data are a composite
index of mean daily values from Sac-
ramento, Tahoe, Nevada City, and
Hetch Hetchy (Figure 1), 1932-1993
(Riddle, unpublished). This index is
used to represent air temperature
variations in the upper Merced Basin.
Daily averaged discharge is from the
USGS gaging station at Happy Isles.

On average, 95% of the discharge in
Merced River above Happy Isles is
driven by snowmelt (Clow and oth-
ers 1996; Cobb and Biesecker 1971)
as illustrated in Figure 2 by the wide
separation between peaks in precipi-
tation (winter) and discharge (spring).
Cayan and others (1993), Cayan (1996),
and Dettinger and Cayan (1995) pro-
vide details on the temporal/spatial
relationships between snowmelt-
driven (high elevation) and rainfall-
driven (low elevation) discharge.
Morris (1985) provides an overview
of snowmelt. Water year days 165
(March 13) through 285 (July 12)
were selected for study; this period
generally encompasses the rise and
decline in snowmielt-driven discharge.
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Figure 2
LOW-PASS FILTERED AIR TEMPERATURE,
PRECIPITATION, AND DISCHARGE
Double-pass boxcar filter to preserve phase:
15 days for air temperature;

25 days for precipitation; 9 days for discharge.
Precipitation and air temperature from a
mean-daily index: Sacramento, Tahoe, Nevada City,
and Hetch Hetchy. D/scharge from Merced River,
Happy Isles, Yosemite National Park, California.

Our focus is on the air temperature/
discharge linkage and mostly for the
high snowpack/high discharge years.
Given the system complexity, it may
seem unexpected that linear methods
capture most of the discharge vari-
ance using only air temperature as
input. One statistical approach is the
use of a difference equation to esti-
mate output (discharge) from filtered
input (temperature) and, possibly,

past output (Equation 1):
N M

Q[n] z a1 Q[n 1]+2 b T[n—l]
i=1 1=0

Where:

[n] is the time index,

a; are the past discharge (Q) coeffi-
cients, and

b; are the present and past tempera-
ture (T) coefficients.

In the simplest case, discharge is esti-
mated by multiplying the correspond-
ing coefficients with air temperature
and summing. Each day’s discharge
is based on the temperature for the
present and past 2 .or 3 days (ult-
mately the past temperature signal
fades into model noise).

In a2 more realistic model, the coeffi-
cients, b;, vary with time. A Kalman
filter (Ljung 1995, 1987; Brown and
Hwang 1977) is one approach to
estimate the time-varying parame-
ters. Kalman filter methods are a
well defined way to pick optimum
coefficients; for details, see the above
references. The filter recursively es-
timates how past values of air tem-
perature and discharge should be
weighted to produce an optimal es-
timate of discharge given errors in
both the observations and the filter
(the model). The Kalman filter
method used here is a 1-day forecast
(Ljung 1995, 1987).

In attempting to predict discharge
beyond 1 day, the new estimates of
the coefficients must be based on
simulated (by equation 1) rather
than observed discharge. The Kal-
man filter gives daily estimates of
discharge and time-varying parame-
ters. The first step in prediction is to
estimate the coefficients used to cal-
culate discharge. This starting point
was arbitrarily selected here as day
225. The coefficients for day 225 are
used in the difference equation with
day 226 temperature to estimate day
226 discharge. This estimated dis-
charge is then fed back into the Kal-
man filter to estimate a new set of
coefficients (and discharge) for day
226, which are again fed into the equa-
tion. This procedure is repeated, in-
creasing the forecast time in this
example to 8 days.

Results

We first illustrate a simple example
using constant parameters (constant
b; values in the equation). These
parameters were identified using an
instrumental variable method that
squeezes the maximum correlation
out of temperature or temperatures
and past discharge (Ljung 1995, 1987).

As expected, the simulated discharge
values are too high in late winter/
early spring and too low later (Fig-
ure 3). This is partly because the
parameters represent an average over
conditions where the days are becom-
ing longer and the nights warmer as
spring progresses (the snowpack is
also accumulating thermal energy).

Therefore the response is first over-

and then underestimated.
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OBSERVED AND SIMULATED DISCHARGE
USING A CONSTANT PARAMETER MODEL,
MERCED RIVER AT HAPPY ISLES, 1993

The next example, a variable parame-
ter Kalman filter analysis, may seem
like cheating because we are curve
fitting with time-varying parameters.
The parameter averages follow differ-
ent cycles depending on wetness and
dryness and lead/lag relationships
(not shown). The parameters prov1de
predictive power only after a series of
air temperature and discharge fluc-
tuations have already occurred (after
observed discharge is compared to air
temperature). About all that is known
in advance is whether the previous
winter was wet or dry. At least this
objectively identifies when the filter
gain (coefficient sum) begins to de-
crease due to a limited snowpack,
such as June 1 for the average of the
10 wettest years, 1932-1993 (excluding
the 2 wettest years, 1983 and 1969),
and May 16 for the driest (Figures 4
and 5).
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MEAN DAILY DISCHARGE, 1932-1993,
DURING AND FOLLOWING THE MEDIAN
DAY OF SNOWMELT “PULSE” (Aprit 19) UP
TO ONSET OF THE SUMMER TRANSITION

When the time series are extended to
an 8-day forecast, these initial results
appear to be reasonable (Figure 6).
Beyond day 3 the parameters (b;)
continue to change but are based
solely on predicted values of tem-
perature (assumed) and discharge.

If the parameter changes were small
over the 8-day window of forecast-
ing, a constant parameter model
might be an adequate method of
approximation (ze, Figure 3). But we
would only know that after the fact
(e, hindcasting).
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Figure 5
AVERAGE DAY OF THE SUM OF DAILY
RESPONSE COEFFICIENTS, bi, BEFORE
THE SUMMER TRANSITION IN AWET AND
DRY 10-YEAR COMPOSITE

Our lastexample is an initial attempt

to use these methods in a prediction
mode. At some point only predicted
(rather than observed) air tempera-
tures will be included in the model-
ing scheme. To keep this simple, we
are assuming the observed air tem-
perature values are predicted values.
Therefore, the results are better than
can be expected using true predic-
tions of air temperature. This assump-
tion is of minor significance here,
because assessment of prediction
error in air temperature (which is
very small) is a different issue. Here
we are attempting to predict discharge
solely on the basis of air temperature
and past estimates of discharge to
advance the predictions one day at a
time. :
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Figure 6
FORECAST OF MERCED RIVER

DISCHARGE AT HAPPY ISLES,
WITH 1-DAY FORECAST DAY 225, 2-DAY
ON 226, 3-DAY ON 227, ETC.
Note divergence around the 5-day forecast between
observed and forecasted.

Discussion

The basic evolution of a spring snow-
melt cycle in the West seems to start
with a change in atmospheric circu-
lation. A low pressure (winter) pat-
tern is replaced (within days) by a
strong and expanding high pressure
pattern, accompanied by high air
temperature and a persistent surge in
snowmelt-driven discharge (Cayan,
this issue). This, at least for purposes
of discussion, might be called a
hydroclimatic spring transition (Fig-
ure 4). This transition may or may
not show a relationship to the pre-
sumably more fickle oceanographic/
atmospheric spring transition. (Strub
etal (1985) discuss the oceanographic
spring and fall transition.)

Following the typical strong surge in
discharge, the temperature response
coefficients (b;) in the equation largely
track the rise in discharge as tempera-
ture increases its control over the snow-
melt process. At some point the system
issaturated (the rise in coefficients tends
to flatten out). This phase is followed
by a steady decline. This point of the
decline, where the sum of the coeffi-

cients (or gain) decreases, might be a

summer transition (Figure 5). We are
notaware of an oceanographic counter-
part summer transition.

The initial stages of forecasting spring
snowmelt discharge using statisti-
cal/dynamical time series are encour-
aging. These methods provide some
insight into the response charac-
teristics of the system, but we need
“to test further the forecasting power
in our data-derived coefficients
(Dettinger, this issue). We know the
coefficients vary from year-to-year
and tend to be higher in wet than in
dry years. The alternating use of a
Kalman filter with the difference
equation appears to extend forecasts
beyond low-risk 1-day forecasts,
which use only observed discharge
values. Also, multi-parameter mod-
els such as input of the daily vari-
ations in high-elevation snowpack as
well as air temperature, may better
constrain predictions, but such re-
cords are short. As the model com-
plexity increases, it makes more sense
to use physically based models (Jeton
and Smith 1993; Jeton et al 1996). In
closing, we have only scratched the
surface, and there are many options.
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Sampling for Zooplankton in the Lower Estuary

Wim Kimmerer

This report describes results to date
of the zooplankton pilot study be-
gun in spring 1997. The objectives of
this study are to answer these ques-
tions:

e What changes have occurred in the
zooplankton of the lower estuary
since the previous survey, conducted
in 1978-1981?

e What sampling design would repre-
sent the zooplankton of the lower
estuary most costeffectively in a
long-term monitoring program?

e What species (or larger taxonomic
groupings) are important in the
lower estuary, and what is their dis-
tribution in space and time?

The study design calls for initial sam-
pling to determine the best sampling
strategy to account for vertical and
lateral variability in abundance. At
present we are finishing this initial
phase. A large part of the work in this
phase has been in training assistants
to identify the species occurring in
this area. Because plankton can freely
enter the bay from the coastal ocean,
the potential species diversity is
much higher than in the regions of
the upper estuary now being sam-
pled frequently. This diversity sug-
gests caution in assigning names to
specimens until the counters gain fa-
miliarity with the whole suite of spe-
cies likely to be encountered.

The USGS sampled for zooplankton
in 1978-1991 (Ambler er al 1985).
Part of the rationale for this study is

to detect changes since the USGS

sampling that result from introduc-
tions of zooplankton and possibly
from grazing by Potamocorbula
amurensis. Other current sampling
efforts will provide additional infor-
mation: Dr. Steve Bollens (RTC) has
been sampling on monthly cruises of
R/V Polaris, and we may analyze

some of those samples to supplement
samples we will begin taking on the
Bay Study surveys. His assistant, Jeff
Cordell of the University of Wash-
ington, has provided an initial list of
species from the Gulf of the Faral-
lones, which will prove useful in ana-
lyzing samples, particularly from the
Central Bay. NMFS is taking samples
with a 500 ym mesh net in Central

Bay, and identifications resulting

from these samples (by Tony Chess)
will be useful as well.

We have conducted two sampling
cruises on R/V Questuary and two
on an outboard boat. On the Questu-
ary cruises (April and May) we sam-
pled along transects across the bay
(South, Central, and San Pablo, the
latter omitted in April because of a
vessel breakdown). On each transect
we took both vertical and surface
tows at stations deeper than about 3
meters and oblique tows at other sta-
tions. In the third cruise (June) we
took several samples for identifica-
tion, eight replicate vertical tows for
examination of sampling variability,
and samples for analyzing size classes
of copepods. The fourth cruise, from
which analysis is incomplete, was for
further sampling for identification
and to conduct a transect into shal-
low water in San Pablo Bay to deter-
mine whether zooplankton in this
region 1s depauperate (as has been
found in other shallow areas).

Abundant Species

Species identifications so far are ten-
tative. In general, results to date are
similar to those presented by Ambler
et al (1985) except for two introduced
species, the copepods Tortanus dex-
trilobatus and Psendodiaptomus ma-
rinus. It is too early to tell if
abundance of common species such
as copepods of the genus Acartia 1s
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